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We study the second-harmonic generation by laser interaction with a cold inhomogeneous underdense
plasma, using a perturbative approach to solve the coupled set of Maxwell fluid, and momentum equations.
The laser field is assumed to be Gaussian with diffractive effects included. The solution of the second-order
inhomogeneous wave equation is obtained from the Green’s function formalism in the paraxial approximation.
We show that the total power generated is proportional to the square of the laser intensity and independent of
the plasma density in the low-density limit. Depending on the laser beam waist and on the plasma density
profile, the second-harmonic generation can be highly efficient.@S1063-651X~96!02407-5#

PACS number~s!: 52.40.Db, 42.25.2p, 42.65.Jx, 52.35.Mw

Until the end of the past decade, the intensities of the
available focused lasers were limited to the range of
101521016 W/cm2. The new laser technology based on
chirped pulse amplification in solid state amplifiers followed
by temporal compression at the picosecond or subpicosecond
duration @1# made possible the production of compact, in-
tense, terawatt lasers. After focusing, they may reach inten-
sities above 1018 W/cm2, which represents laser field
strengths larger than one atomic field unit. When the laser
pulse reaches intensities of the order of 1015 W/cm2, all
atoms irradiated by the laser are ionized, a plasma is formed
with densities in the range 101021020 cm23, the laser propa-
gates in these plasmas, and the interaction is then dominated
by electron-photon coupling. For high-intensity short pulses,
the plasma can be considered as a mixture of a cold electron
fluid and a fixed-ion background ensuring the electroneutral-
ity of the plasma. The motion of the electrons in the presence
of such fields is weakly relativistic, and connected to this
behavior, various effects such as relativistic self-focusing,
wake field generation, production of strong magnetic fields,
electron-positron pair production, harmonic generation, have
been theoretically predicted. This last effect is treated in the
present work, where we consider the second-harmonic gen-
eration by interaction of an intense laser with a preformed
cold underdense inhomogenous plasma, with plasma fre-
quencyvp5ckp5(4pe2Nc /m0)

1/2, wherem0 is the electron
rest mass andNc the initial plasma density at the center of
the laser beam, as discussed below. As previously shown
@2,3#, no second harmonic is generated for an initially uni-
form plasma density; generation of even harmonics requires
that the laser must interact with plasmas having initially den-
sity gradients, which occurs when a laser pulse ionizes neu-
tral gas. When an intense laser pulse is focused in a gas, it
produces a plasma through multiphoton or tunnel ionization.
The plasma density builds up when the laser intensity ex-
ceeds the gas ionization threshold. Since the multiphoton or
tunnel ionization has a strong nonlinear dependence on the
laser intensity, a Gaussian beam radial intensity profile pro-
duces a plasma with strong radial density gradients, the
maximum being on the beam axis. This effect has been ob-
served in connection with defocusing of laser beams by plas-
mas formed from noble gases@4#. Due to the complexity of
the harmonic-generation problem, most of the theoretical ap-

proaches consider the one-dimensional~1D! approximation
~where all physical quantities are functions of a single vari-
able z5z2vt). In this case the existence of constants of
motion simplifies the problem for the harmonic generation
by intense laser-plasma interaction. Of course, a 3D scheme
is required to treat the situation where the plasma is radially
inhomogeneous. Recently, Brandiet al. @3# have studied the
third-harmonic generation by an homogeneous plasma, using
the Green’s function approach to solve the 3D Helmholtz
equation. We closely follow this work adopting a perturba-
tive scheme, i.e., all the physical quantities are expanded as
powers of the incident laser field. This corresponds to a situ-
ation where relativistic corrections are small. Furthermore, as
in Refs. @3,5#, we introduce the expansion parameters
a5l0/2pr 0!1, wherel0 and r 0 are the laser beam wave-
length and waist, andd5vp /v0!1, with v052pc/l0 be-
ing the laser frequency. The first assumption corresponds to
the paraxial approximation and the second to the requirement
that the plasma is very underdense,Nc!1020 cm23. We
have also defined the parameteraS5l0 /2pLS!1, where
LS is the typical electron density gradient length. The
paraxial approximation is valid near the propagation axis,
which justifies the modeling of the initial electron plasma
density by taking the parabolic approximation

N05Nc~11sr2/LS
2!5Ncf ~r!,

wheres521(11) denotes the electronic plasma density as
a maximum~minimum! on the laser axis. Here we have sup-
posed that the laser beam propagating along thez direction
has maximum intensity atr5Ax21y250.

The electric fieldE and the magnetic fieldB are written in
terms of the scalar potentialF and the vector potentialA,
i.e., E52“F21/c]A/]t, andB5“3A. The relativistic
cold hydrodynamic equations for the electron fluid consider
the electron densityN and the electron momentumP
5m0gV @V is the fluid velocity andg 5(11P2)1/2 is the
Lorentz factor#. These equations are coupled to the wave
equation and Poisson’s equation through the charge density
2e(N2N0) and the current densityj52eNV. It is conve-
nient to normalize the quantities appearing in these equations
as
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a5eA/m0c
2, f5eF/m0c

2,

p5P/m0c5gV/c, n5N/Nc .

We then have the set of coupled nonlinear equations
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where the Coulomb gauge¹•a50 has been assumed and
F' andFL are the transverse and longitudinal components of
a vector fieldF.

To study the harmonic generation, we develop a perturba-
tive expansion of all plasma quantities in terms of powers of
the known laser vector potential amplitudea0 . This ampli-
tude is related to the laser intensityI 0 by

a0.4.25310210@l0~mm!#@ I 0~W/cm2!#1/2. ~5!

For l0.1 mm, the perturbative treatment breaks for laser
intensities of the order ofI 0.1018 W/cm2, which imply
a0.1.

If the plasma is stationary and neutral, in zero order of
the laser field, from Eqs.~1!–~4!, the plasma quantities are
p050, n05 f (r), f050, and g051. To first order, the
equations are
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In order to calculate the second-harmonic field, it is nec-
essary to obtain only the first-order correction in the elec-
tronic density. From Eqs.~6!–~8!, we find up to second order
in d

n15
i

k0
¹f •a0 , ~10!

wherek052p/l0 . Using Eq.~10! and the second-order ex-
pansion of Eq.~4!, we obtain to lowest order ind

@“21k2~r!2#a25kp
2n1~p1'1p1L!1kp

2n0p2L1
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c
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,

~11!

where we have definedk2(r)5A4v0
2/c22kp

2 f (r). Follow-
ing the same procedure as in Ref.@3#, one obtains
kp
2(n1p1L1n0p2L)11/c]¹f2 /]t5O(asd

2) and therefore
we have

@¹21k2~r!2#a25 id2k0~¹f •a0!a0 . ~12!

The right-hand side of Eq.~12! corresponds to the source for
the second-harmonic field. It is a transverse field~to lowest
order in d) associated with the gradient of the electronic
density.

To solve Eq. ~12! we assume that the pump laser is
Gaussian with diffractive effects included. In this case the
vector potential is given by

a05exas~r,z!exp~ iC0!, ~13!

where

as~r,z!52
izR

z2 izR
ã0expF ik0 r2

2~z2 izR!G , ~14!

C05k0z2v0t, andzR5k0r 0
2/2 is the Rayleigh length. The

approximate solution of Eq.~12! may be obtained neglecting
to orderd2 the spatial dependence ink2(r)

2, which is rein-
forced by the assumption of the paraxial approximation jus-
tifying the parabolic modelling of the electronic density.
From the Green’s function solution of the Helmholtz equa-
tion

~¹21k2
2!g~r2r 8!524pd~r2r 8!, ~15!

with

g~r2r 8!5
expik2ur2r 8u

ur2r 8u
~16!

and k25A4v0
2/c22kp

2 f (r).2k0@113/8d2f (r)#, we inte-
grate Eq.~12! to find
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sd2k0
LS
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with

I5E
2Z0

ZM
dz8E

2`

`

x8dx8E
2`

`

dy8S izR
z2 izR

D 2

3expF ik0 x821y82

~z82 izR!Gexpik2ur2r 8u
ur2r 8u

. ~18!

The primed quantities in Eq.~18! are to be integrated over
the corresponding integration variable andr is the observer’s
position. The plasma is modeled by a finite slab extending
from 2Z0 to ZM .

In the paraxial approximation the radiation zone is defined
by the relationuz2z8u@ux2x8u,uy2y8u and therefore one
has
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where we have definedDk52k02k2.23/4k0d
2. We solve

Eq. ~19! in the limit DkzR@1, which is equivalent to the
condition kpr 0@1. In the high-intensity chirped pulse
Nd:YAG laser experiments~where YAG denotes yttrium
aluminum garnet! the spot sizer 0 is typically of the order of
10 mm @7#. Thus our approximation is valid for electronic
plasma densities larger than 531017 cm23. We obtain

a25A~L !
sã 0

2

k0LS
2 x

exp~ ik2z!

~11 iz/zR!2
expF ik0 x21y2

z2 izR
Gex , ~20!

where the factorA(L) depends on the length of the plasma
L5(ZM1Z0). For L!zR , the diffraction of the laser beam
is negligible over the extension of the plasma and then we
find

A~L !52
4

3
iexp@ iDk~ZM2Z0!/2#sin~DkL/2!. ~21!

On the other hand, for a very long plasmaL@zR , the am-
plitude of the second-harmonic field approaches the constant
valueA(L)52/3.

The second-harmonic field found in Eq.~20! corresponds
to the transverse Hermite-Gaussian mode TEM1,0. According
to Eq. ~20!, the second-harmonic field is an odd function of
x. For s51(21), and at a point in the half-space corre-
sponding tox.0, whena0 is along the positive-x direction,
it points towards the higher~lower! plasma density region of
space, whereas the negative-x direction corresponds to lower
~higher! densities. Such asymmetry is at the origin of the
second-harmonic generation. In the half-spacex,0, how-
ever, the asymmetry occurs in the opposite sense, thus ex-
planing the change of sign of the second-harmonic field. This
results in the generation of a beam characterized by a profile
corresponding to a zero intensity on the beam axis.

The power radiated by the second harmonic is calculated
from the flux of the Poynting vector through the surface
defined by a plane perpendicular to thez axis. Since

S5ReF c

8p
E3H* G.

ck2
2

8p
uã2~L !u2ez , ~22!

we find from Eq.~20! the following expression for the power
in the second harmonicP2:

P25
1

64
cuAu2S aS

a D 4ã 0
4 . ~23!

The power conversion rate is defined as the ratio of the
power in the second harmonicP2 to the power in the pump
laser fieldP15v0k0r 0

2/16ã 0
2 . Its maximum value occurs for

odd multiples ofL5p/Dk!zR :

maxS P2

P1
D5

4

9

aS
4

a2 ã 0
2 . ~24!

On the other hand, forL@zR we have

P2

P1
5
1

9

aS
4

a2 ã 0
2 . ~25!

The power conversion rate varies as the intensity of the
laser powerI 0 . Moreover, it is independent of the electronic
plasma density, which may be explained by the exact com-
pensation between the increase of the source for the second-
harmonic field withd2 and the phase mismatch represented
by Dk, which also varies asd2. A qualitative discussion by
Esareyet al. @2# predicts that volume effects due to the
‘‘halo’’ region ~the portion of the interaction region where
the gas is not fully ionized! of the laser pulse should change
the I 0

2 dependence of the second-harmonic total power gen-
erated toI 0

3/2, as is the case of atomic harmonic generation
@6#. Since the emitted power is independent of the electronic
plasma density, no modifications in this intensity dependence
should occur due to the ‘‘halo’’ region effects. We should
notice that althoughaS ,a!1, the experimental conditions
for a chirped pulse laser may be such thataS /a.1, which
may lead to a highly efficient mechanism of second-
harmonic generation.

Summarizing, the emission of second-harmonic radiation
by a cold, inhomogeneous, underdense plasma has been
studied using a Green’s function formulation to calculate
the total power generated by the second-harmonic radiation.
All the physical quantities have been expanded in terms
of the parametersa5l0/2pr 0!1, d5vp /v0!1, and
aS5l0/2pLS!1. Furthermore, our calculations are re-
stricted to the conditionkpr 0@1, which implies d @a.
Typically, those approximations correspond to the range of
electronic plasma densities from 531017 to 1020 cm23. We
have considered a perturbative expansion in terms of powers
of the pump laser vector potential. For a chirped pulse laser
with l0'1 mm, our perturbative approach is valid for laser
intensities smaller than 1018W/cm2. Nonperturbative results
are at the moment restricted to 1D models@2#, which are
clearly inadequate to treat the inhomogeneous case discussed
in this paper. To study the harmonic generation by very in-
tense fields such as those expected in the relativistic self-
focusing regime@5#, new 3D theoretical schemes must be
developed.

The results show that the emision occurs in a transverse
Hermite-Gaussian mode, that the total power is proportional
to I 0

2 , and that the power conversion rate is independent of
the electronic density within the range considered in this
paper. Under certain conditions on the preformed plasmas,
the interaction of intense lasers with inhomogeneous plasmas
may be an efficient mechanism of second-harmonic genera-
tion.
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